Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Clinical Oncology ; (24): 1001-1004, 2013.
Article in Chinese | WPRIM | ID: wpr-437329

ABSTRACT

Glioma is the most frequently observed primary tumor of the central nervous system in adults. Among the glioma cases, more than three quarters of patients suffer from high-grade gliomas. High-grade glioma is not only a high-degree malignant tumor but is also an easily recurring disease after surgery with a very poor prognosis. Radiotherapy plus concomitant chemotherapy after operation is the standard treatment strategy for high-grade gliomas, which could increase the survival rate of patients. However, the curative effect is really not satisfactory because it could only guarantee a limited survival time. Over the recent years, molecular-targeted treatment has increasingly drawn the attention of scholars with the continuous development in glioma treatment, thereby becoming the hotspot among researchers. Vascular endothelial growth factor (VEGF) is highly expressed in glioma and in the tissues surrounding the cancer cells. VEGF could regulate tumor growth by inducing endothelial cell proliferation, growth, migration, and by increasing the vascular permeability. Hence, VEGF becomes an effective target for the treatment of glioma. Bevacizumab is a monoclonal antibody that can specifically prevent the combination of VEGF and its receptor, thereby inhibiting the formation of tumor blood vessels. At the same time, bevacizumab can normalize the tumor blood vessels, improve the permeability of blood vessels, and increase the effectiveness of drug concentration in the tumor tissues, thereby achieving anticancer efficacy. In this paper, the mechanism of bevacizumab is introduced. The research progress in the application of bevacizumab alone, as well as in combination with chemotherapy or other drugs, for the high-grade glioma treatment will be summarized.

SELECTION OF CITATIONS
SEARCH DETAIL